Highly Oxygenated Monoterpenes from Eupatorium fortunei

Hai Xia JIANG, Kun GAO*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000

Abstract: A pair of epimers of highly-oxygenated monoterpenes were isolated from the traditional Chinese medicine *Eupatorium fortunei*. Their structures were elucidated on the basis of the spectral analysis as (1R*, 2S*, 3R*, 4R*, 6S*)-1, 2, 3, 6-tetrehydroxy-*p*-menthane (1) and (1S*, 2S*, 3S*, 4R*, 6R*)-1, 2, 3, 6-tetrehydroxy-*p*-menthane (2).

Keywords: *Eupatorium fortunei*, traditional Chinese medicine, epimer, highly-oxygenated mono-terpenes.

Eupatorium fortunei is a traditional Chinese medicine, which is widespread in China and used for the treatment of dropsical swelling, chills and fever, as a diuretic, antipyretic¹. A Japanese research group has found a series of thymol derivatives from *Eupatorium fortunei*². In order to search for its biologically active constituents our group carried out a further phytochemical study on this plant and two new highly-oxygenated monoterpenes were isolated from the EtOAc part of its MeOH extract. The EtOAc part showed weak cytotoxicity: $IC_{50}=69.5$ and $86.1 \ \mu g/mL$ against HL-60 and SMMC-7721 cells by SRB method.

Compound **1** was obtained as colorless oil, $[\alpha]_D^{14} + 4$ (*c* 0.15, CH₂Cl₂). Its IR spectrum showed obvious absorption band for hydroxy groups at 3423 cm⁻¹. The HRSIMS showed $[M+H]^+$ at *m/z* 205.0536 (calcd. for C₁₀H₂₀O₄+H⁺ 205.1434) and the EIMS gave a molecular ion peak at *m/z* 204 and fragment ion peaks at *m/z* 186 [M-H₂O]⁺, 168 [M-2H₂O]⁺, 153 [M-2H₂O-Me]⁺, 125 [M-2H₂O-isopropyl]⁺ and 107 [M-3H₂O-isopropyl]⁺, corresponding to a molecular formula C₁₀H₂₀O₄. The ¹H-NMR, ¹³C-NMR and DEPT spectra (**Table 1**) showed signals for a quaternary carbon, five methines, a methylene and three methyls. The proton signals of three methyl groups were at δ_H 1.39 (s, 3H), 0.92 (d, 3H, *J* = 7.2 Hz), 0.78 (d, 3H, *J* = 7.2 Hz) and three of five methine protons were bearing oxygen signals at δ_H 3.69 (d, 1H, *J* =9.3 Hz), 3.96 (dd, 1H, *J* = 9.3, 11.4 Hz) and 3.77 (t, 1H, *J* = 2.4 Hz) in the ¹H-NMR spectrum. The chemical shift of the quaternary carbon was at δ_C 74.6 in the ¹³C-NMR spectrum. Thus compound **1** was deduced as a menthane monoterpene derivative with four hydroxys³. The cross-peaks of H-3 (δ 3.96) with H-2 (δ 3.69) and H-4 (δ 1.97); H-4 with H-3, H-5 (δ 1.59, 1.77) and

^{*} E-mail: npchem@lzu.edu.cn

Hai Xia JIANG et al.

H-8 (δ 2.30); H-6 (δ 3.77) with H-5 in the ¹H-¹H COSY of **1** and the correlations of a methyl singlet at $\delta_{\rm H}$ 1.39 with C-1 (δ 74.6), C-2 (δ 76.7) and C-6 (δ 72.9) as well as other correlations in the HMBC (**Figure 2**) showed that the four hydroxys were located at C-1, C-2, C-3 and C-6, respectively and the isopropyl group was present on C-4, indicated that compound **1** was 1, 2, 3, 6-tetrahydroxy-*p*-menthane. The relative stereo-structure of **1** could be determined by the coupling pattern of cyclic protons in its ¹H-NMR spectrum. The large coupling constants of H-3 with H-2 and H-4 ($J_{3,2} = 9.3$ Hz, $J_{3,4} = 11.4$ Hz) showed that C₂-H, C₃-H and C₄-H were axial protons, and the small coupling constants of H-6 with H-5_{ax} and H-5_{eq} ($J_{6,5a} = J_{6,5e} = 2.4$ Hz) was characteristic of the equatorial H-6 (**Figure 1**). The configuration of C₁ was determined from NOE experiments: irradiation of the methyl group at δ 1.39 (H-7) enhanced the signal at δ 3.69 (H-2). Therefore the structure of **1** was identified as (1R*, 2S*, 3R*, 4R*, 6S*)-1, 2, 3, 6-tetrehydroxy-*p*-menthane.

Compound 2 was obtained as colorless oil, $[\alpha]_{D}^{17}$ -36 (c 1.4, CH₂Cl₂). Its IR and MS were very similar to these of 1. The molecular formula was the same as that of compound 1 ($C_{10}H_{20}O_4$). Its HRSIMS due to $[M+H]^+$ was at m/z 205.0521 (calcd. for $[C_{10}H_{20}O_4+H]^+$ 205.1434) and EIMS due to $[M]^+$ was at m/z 204 and fragment ion peaks at m/z 189 [M-Me]⁺, 186 [M-H₂O]⁺, 161 [M-isopropyl]⁺, 143 [M-H₂O-isopropyl]⁺ and 125 $[M-2H_2O-isopropyl]^+$. 2 and 1 had similar chemical shifts of protons but obvious different coupling constants in ¹H-NMR (Table 1), and their shifts of carbons had small difference in ¹³C-NMR (Table 1), which indicated that compound 2 was a stereo-isomer of 1. The protons and carbons were easily assigned by HMBC (Figure 2) and ${}^{1}H^{-1}H$ COSY experiments. Stereochemically, the coupling constants of H-4 with H-5_{ax} ($J_{4,5a}$ = 13.5 Hz), H-6 with H-5_{ax} ($J_{6,5a}$ = 10.8 Hz) and H-3 with H-2 and H-4 ($J_{3,2}$ = $J_{3,4}$ = 2.7 Hz) showed that C₄-H and C₆-H were axial protons and C₃-H was equatorial proton. In the NOE experiment, the enhancement between H-6 and H-2 could be observed but no enhancement between the methyl at δ 1.45 (H-7) and H-6 or H-2, indicating that the methyl (H-7) was at opposite side of C_2 -H and C_6 -H. Thus compound 2 was deduced to be (1S*, 2S*, 3S*, 4R*, 6R*)-1, 2, 3, 6-tetrahydroxy-p-menthane.

 Table 1
 ¹H-NMR (300 MHz), ¹³C-NMR (100 MHz) and DEPT data of compounds 1 and 2 (CDCl₃, δ ppm, J Hz)

No.	$1 \delta_{\rm H}$	2 δ _H	No.	1 δ _C	2 δ _C	DEPT
1			1	74.6	74.3	С
2	3.69 d (9.3)	3.81 d (2.7)	2	76.7	77.8	СН
3	3.96 dd (9.3, 11.4)	4.15 t (2.7)	3	68.9	70.4	СН
4	1.97 ddt (11.7, 11.4, 3)	2.06 dt (13.5, 2.7)	4	41.4	43.5	СН
5a	1.77 m	1.70 m	5	26.8	32.7	CH_2
5e	1.59 m	1.78 m				
6	3.77 t (2.4)	4.29 dd (10.8, 2.4)	6	72.9	66.9	CH
7	1.39 s	1.45 s	7	23.9	20.6	CH ₃
8	2.30 m	1.68 m	8	27.8	27.8	СН
9	0.92 d (7.2)	0.97 d (6.6)	9	20.9	20.9	CH ₃
10	0.78 d (7.2)	0.97 d (6.6)	10	14.9	20.9	CH_3

Figure 1 Structures of compounds 1 and 2

Figure 2 Correlation of HMBC of compounds 1 and 2

Acknowledgment

This work was supported by the NNSFC (No. 20372029 and No. 20021001 - QT Program) and by the Key Project of Chinese Ministry of Education (No. 104178).

References

- 1. Jiangsu College of New Medicine, "A Dictionary of the Traditional Chinese Medicines", People Hygiene Publisher, Shanghai, 1977, p. 1377.
- M. Tori, Y. Ohara, K. Nakashima, M. Sono, *J. Nat. Prod.*, **2001**, *64*(8), 1048. A. A. Ahmed, *J. Nat. Prod.*, **2000**, *63*(7), 989. 2.
- 3.

Received 19 November, 2004